
Self-Protection in a Clustered
Distributed System

Noel De Palma, Daniel Hagimont, Fabienne Boyer, and Laurent Broto

Abstract—Self-protection refers to the ability for a system to detect illegal behaviors and to fight-back intrusions with counter-

measures. This article presents the design, the implementation, and the evaluation of a self-protected system which targets clustered

distributed applications. Our approach is based on the structural knowledge of the cluster and of the distributed applications. This

knowledge allows to detect known and unknown attacks if an illegal communication channel is used. The current prototype is a self-

protected JEE infrastructure (Java 2 Enterprise Edition) with firewall-based intrusion detection. Our prototype induces low-performance

penalty for applications.

Index Terms—Middleware, clustered systems, self-protection.

Ç

1 INTRODUCTION

THE complexity of today’s distributed computing envir-
onments is such that the presence of bugs and security

holes is statistically unavoidable. A very promising approach
to this issue is to implement a self-protected system which
refers to the capability of a system to protect itself against
intrusions, i.e., detect them and fight them back.

This paper presents a self-protected system in the context
of cluster-based applications. We consider that the hardware
environment is composed of a cluster of machines inter-
connected through a local area network with an Internet
access via a router. The software environment is composed of
a set of application components deployed on the cluster.
These assumptions correspond to the point of view of a
machine provider which rents his cluster infrastructure to
different customers. We consider that each customer has a set
of machines exclusively allocated to his applications. How-
ever, the local network and the Internet access are shared by
all the applications. Therefore, the threat may come from
outside of the cluster through the Internet, but also from
inside because of a hostile accredited customer.

The approach is based on the principle of least privilege
applied to communication channels. Any attempt to use an
undeclared communication channel is trapped and a
recovery procedure is executed. Legal communication
channels are automatically calculated from the hardware
and software architectures of the system and are used to
generate protection rules that forbid the use of unspecified
channels. Moreover, if the architecture of the system

evolves, the protection rules are updated accordingly
without any human intervention. The main characteristics
of our system are: 1) to minimize the perturbation on the
managed system while providing a high reactivity, 2) to
automate the configuration (and reconfiguration) of secur-
ity components when the system evolves, and 3) to keep the
protection manager (which implements the protection
policy) independent from the protected legacy system.
The main limitation relates to the scope of the detected
attacks and to the supported communication protocol; the
current system can only detect attacks which use illegal
communication channels based on the TCP/IP protocol. In
order to validate our approach, we applied it to the self-
protection of a cluster of machines which hosts a web
application structured as a JEE architecture.

The remainder of the article is organized as follows:
Section 2 presents the related work. Section 3 presents our
design. The evaluation is reported in Section 4. We conclude
in Section 5. The implementation details are reported in
Annex I, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPDS.2011.161.

2 RELATED WORK

This section reviews the main tools and techniques
currently used by security experts to fight against intrusions
and the existing systems which implement a self-protected
behavior.

2.1 Intrusion Detection

Two main approaches have been explored [20] to ensure
intrusion detection: misuse intrusion detection and anomaly
intrusion detection. These approaches have been used in the
case of Firewalls and Intrusion Detection Systems (IDS).
While Firewalls are often used as filtering gateways to
detect and to block illegal communication in real time, IDS
mainly work offline and perform deep analysis to trigger
alarms afterward. Misuse intrusion detection aims at detect-
ing traces of well-identified attacks. The principle is to rely
on a database which gathers well-known attack scenario

330 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 2, FEBRUARY 2012

. N. De Palma and F. Boyer are with the INRIA - SARDES Research
Group, University of Grenoble, 655 avenue de l’Europe, Montbonnot
38334 St-Ismier Cedex, France.
E-mail: noel.depalma@inrialpes.fr, Fabienne.Boyer@imag.fr.

. D. Hagimont and L. Broto are with the IRIT/ENSEEIHT, University of
Toulouse, 2 rue Charles Camichel - BP 7122, 31071 Toulouse cedex 7,
France. E-mail: {Daniel.Hagimont, Laurent.Broto}@enseeiht.fr.

Manuscript received 6 Apr. 2010; revised 30 Nov. 2010; accepted 24 Mar.
2011; published online 25 May 2011.
Recommended for acceptance by M. Parashar.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2010-04-0202.
Digital Object Identifier no. 10.1109/TPDS.2011.161.

1045-9219/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

specifications (also called attack signatures). The intrusion
detector searches the database for a signature which
matches the observed behavior (registered in an audit) and
it raises an alert if one is found. Snort [19] is an example of
such systems. This approach induces a small number of
false-positives but cannot detect unknown attacks. Anomaly
intrusion detection tries to spot irregular behaviors of the
system by defining the normal behavior of the system
(instead of attacks). The system can be observed and any
misbehavior is signaled. An early work [6] modeled and
verified behavior correctness at the level of system calls.
Recent examples of anomaly-based detection can be found
in [17], [8], [9], and [5]. This approach can detect unknown
attacks but at the price of a lot of false positives.

2.2 Backtracking Tools

Backtracking tools [14] record detailed data about the
system activity so that once an intrusion attempt has been
detected, it is possible to determine the sequence of events
that led to the intrusion and the potential extent of the
damage (e.g., data theft/loss). The Taser system [10]
provides the ability to restore the system in a trusted state.
It enhances the file system with a selective self-recovery
capability. Taser logs all file system access for each process.
If a process is compromised, Taser computes illegal access
for each file and is able to rollback illegal modifications.
Such backtracking tools can help to automate parts of this
process but human expertise is still required for an accurate
understanding of the attack.

2.3 Self-Protected Systems

Self-protected systems are systems which are able to
autonomously fight back intrusions in real time.

Rootsense [15] is an example of self-protected system. It
differs from classical IDS in the sense that it detects and
blocks intrusions in realtime. It audits events within
different level of the host operating system and correlates
them to comprehensively capture the global system state. It
restricts the detection domain to root compromises only;
doing so reduces runtime overhead and increases detection
accuracy. It also adopts a dual approach to intrusion
detection: a root penetration detector detects attempts to
hijack the system and a root misbehavior detector tracks
misbehavior by root processes (if the system was hijacked).

MLIDS [1] (multilevel intrusion detection system) is
another example of self-protected system. It automates the
detection of network attacks and proactively protect against
them. MLIDS analyzes network traffic using three levels of
granularities (traffic flow, packet header, and payload), and
employs an efficient fusion decision algorithm to improve
the overall detection efficiency and minimize the occurrence
of false alarms.

The Self-cleansing system (SCS) [11] is another solution to
build self-protected software. It targets stateless replicated
servers (e.g., web servers) involving a load-balancing
strategy. This pessimistic approach makes the assumption
that all intrusions cannot be detected and blocked. In fact, the
system is considered to be compromised after a certain time.
Hence, this approach periodically reinstalls a part of the
system from a secure repository. However, this solution only
applies to stateless components.

2.4 Summary

With most common security tools, human administrators
are heavily solicited by the produced alarms. In particular,
after checking the relevance of alarms, they are usually in
charge of initiating lots of actions, both for coordinated
defense at the cluster scale (e.g., through reconfiguration of
the security software) and investigation (e.g., with back-
tracking tools). SCS targets specifically a load balancing
pattern and the backend replicas must be stateless. More-
over SCS does not provide any detection mechanism—it
simply periodically reinstall part of the system. Taser is not
fully automated and requires a human intervention if a
dependency is found between an illegal and a legal access.
Moreover Taser is restricted to a single host. Rootsense
adopts both a misuse intrusion and an anomaly detection
approach. It covers a broad range of attack but still may fire
a high number of false-positive. It also targets a singlehost
rather than a clustered-wide infrastructure. MLIDS ana-
lyzes network traffic using three levels of granularities. It
reduces the number of false-positive but is very sensitive to
the payload accuracy.

From this related work, we analyze that a self-protected
system should 1) be fully automated both in its configura-
tion and its reaction to intrusions, 2) fire near-zero false-
positive since the response is automated, and 3) induce a
low-performance overhead on an application performance
to enable real-time protection.

3 DESIGN OF THE SELF-PROTECTED SYSTEM

Our approach relies on the capacity to maintain a consistent
view of the global architecture of the cluster in terms of
machines, software and their interconnections (the sense of self
in Forrest’s terminology [7]). For that purpose, human
administrators use a deployment manager provided by the
infrastructure to remotely install and interconnect software in
the cluster. This deployment manager is the only way to add
or remove software in the cluster. Therefore, this manager
initializes the view of the global architecture and traps all
modifications to maintain the consistency of the view.

The self-protection manager relies on this view of the
global architecture. It is able 1) to compute from this
architecture the legal communication channels, 2) to detect
and block any deviation from these communication
channels, and 3) to isolate the machine belonging to the
cluster that breaks these communication channels. In other
words, our self-protection manager is deployment-aware: the
protection rules that guard the system in terms of legal
communication channels are configured automatically from
the architecture and are updated accordingly when this
architecture evolves. At any time, only the minimal set of
communication channels is opened.

3.1 Sense of Self

The sense of self is implemented by managing a data
structure which describes the architecture of the system.
This data structure that we call the System Representation is
built using a component model. Components involve two
kinds of relations: 1) bindings, which model service
dependencies between elements and, 2) composition links,
which represent containment dependencies (used to model

DE PALMA ET AL.: SELF-PROTECTION IN A CLUSTERED DISTRIBUTED SYSTEM 331

the structure of the system). For instance, the relation
between a machine and a software running on that machine
is reified as a composition link in the System Representation.
Similarly a cluster is represented as a composite component
which includes a set of machine subcomponents. Software
interactions are reified as component bindings and software
configuration variables are reified as component attributes.
The system is aware of 1) the machines that belong to it,
2) the software that run inside, and 3) the legal commu-
nication channels which involve each software across the
machines and their configuration. This awareness is used to
distinguish between normal and abnormal behaviors. Any
software element which does not belong to the architecture
can be viewed as a foreign element. This detection method
allows to detect known and unknown attacks but only if
they use illegal communication channels.

Any element (machine or running software) is therefore
represented as a component in the System Representation.
This component associated with an element of the system is
also used to control the element, i.e., manage its configura-
tion and life cycle at runtime. Therefore, each component
wraps an element to implement its management interface.
All wrappers provide the same management interface for
the encapsulated elements. This interface allows managing
the configuration elements, relations, and lifecycle without
having to deal with complex, proprietary configuration
interfaces, which are hidden in the wrappers. Wrappers
implementations are specific to each software. However, it
is our experience that such wrappers are small and easy to
write [18].

Therefore, the System Representation implements a man-
agement layer on top of the legacy layer (composed of the
actual managed software and hardware). Fig. 1 provides a
full description of the System Representation in the case of a
JEE architecture [12] which includes hardware nodes. It
depicts an L4-switch which balances the requests between
two Apache server replicas. These servers are connected to
two Tomcat server replicas. The Tomcat servers are both
connected to the same MySQL server. For the sake of
clarity, we omit to represent other basic services that may be
deployed into the cluster such as DNS or NFS Servers. It is
important to point out that any provided service must be
explicit in the System Representation as well as the bindings
that reify the communication channels between the clients
of a service and the service itself. Through wrappers, the
System Representation provides all the facilities required for:

Introspection. The introspection interface allows obser-
ving components. For instance, an administration program
can inspect an Apache web server component (encapsulat-
ing the Apache server) to discover that this server runs on
node2:port 800 and is bound to a Tomcat Servlet server
running on node4:port 999. It can also inspect the overall
cluster infrastructure, considered as a single composite
component, to discover that it is composed of one L4-
switch, two Apache servers interconnected with two
Tomcat servers connected to the same MySQL database
server. It can also discover that no software is running on
nodes 7, 8, 9, and 10.

Reconfiguration. The reconfiguration interface allows
control over the component architecture. In particular, this
control interface allows changing component attributes or
bindings between components. These changes are reflected
onto the legacy layer by wrappers.

Thanks to the Introspection interface provided by
wrappers, the self-protection manager is able to discover
the legal communication channels of the system: a legal
channel between two nodes is represented by a binding
between two components; the port on which the application
is running and the IP addresses of the nodes. This allows
the detection of any attack breaking the structural rules of
an application. For instance a communication between node
1 and node 6 is identified as an attack as well as a
communication between node 2 and node 4 on a different
port than the port specified by the existing binding between
these two machines.

Depending on the accuracy of the System Representation,
the protection system could generate false-positives or
false-negatives. A 100 percent accurate System Representation
will not induce any false-positive. A intruder which does
not break explicated communication channels remains
undetected, which corresponds to false-negatives. We will
see in the following section that reconfiguration is a key to
manage the evolution of the System Representation and
therefore the evolution of the system and its legal behavior.

3.2 Self-Protection Manager

The self-protection manager is responsible of the manage-
ment of the System Representation and its use to detect illegal
communications and to take counter-measures.

3.2.1 Management of the System Representation

In order to manage such a System Representation, we rely on
the services associated with the component framework we
used (Fractal [3]). Traditionally, a component framework
provides services for the deployment of a component
architecture and the modification (reconfiguration) of this
architecture. Therefore, any administration action (machine
or software installation or startup) is achieved as an action on
the component architecture and reflected on the real
environment, which implicitly maintains consistency be-
tween the two levels. In order to install a software, a
component is deployed in the System Representation. Simi-
larly, to uninstall a software, its associated component is
removed from the System Representation. Therefore, all the
changes in the system are first performed on the System
Representation which then reflects them on the legacy system.

332 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 2, FEBRUARY 2012

Fig. 1. System representation for a clustered JEE system.

Once the environment is deployed, the system must be
able to track communications and decide if they are legal or
not. Our implementation of this detection mechanism is
detailed in Annex I, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPDS.2011.161, it is based on protection rules
which specify legal communication paths. These rules are
automatically generated from the binding between compo-
nents (discovered by introspecting the System Representa-
tion). Moreover, any change in the environment must be
taken into account by this detection system, which requires
to: 1) identify the communication paths impacted by the
changes: components may have been added/removed in the
System Representation, a binding between two components
may have changed or the configuration of a component may
have been modified. 2) Update the protection rules accord-
ing to the impacted communication paths, in order to detect
behaviors which don’t comply with the updated System
Representation. Protection rules are distributed and imple-
mented on each nodes as sensors and actuators. Actuators
allow update of protection rules and sensors are responsible
for detection of protection rule violations.

3.2.2 Reaction to a Detected Intrusion

If an illegal communication is detected, different policies
can be applied. In our self-protected system, we enforce an
isolation policy which consists in isolating the compromised
machines from the network. In reaction to the violation of a
communication channel, the manager identifies (from the
System Representation) the machine to isolate and all the
software running on that machine. It deletes all the bindings
which involve the identified components in the System
Representation. The modification of the System Representation
will automatically update the protection rules associated
with the involved set of machines, which will forbid any
communication from/to the suspected machine. This
simple policy isolates the incriminated machine to limit
the damages caused by the intrusion, but it may lead to
service unavailability. Another policy is to force the failure
of the incriminated machine (fail-stop) and to provide a
repair algorithm (detailed in [18]).

3.2.3 Securing the Protection System

Enforcing protection of the self-protection system consists
in implementing a reference monitor which is responsible
for assigning and verifying protection rules, and assuring
the security of the system. This enforcement relies on three
key properties: 1) the enforcement that the self-protection
manager cannot be compromised. 2) the enforcement that
sensors and actuators cannot be compromised. 3) since the
previous entities are distributed, communications between
these entities must not be subject to attacks.

The self-protection manager receives reports from sensors
and triggers operations on actuators to adapt protection
rules. The self-protection manager, sensors, and actuators
can be run in privileged mode (and therefore trusted) and if
communications are trusted, the distributed control loop is
trusted. Actuators must authenticate the commands sent by
the self-protection manager. Similarly the manager authen-
ticates sensors reports. This can be achieved by using an
asymmetric authentification mechanism (such as TLS/SSL)
that enforces authentification and avoids message forgery.

If we only consider attacks against applicative compo-
nents, the privileged mode which enforces protection of
these sensors, actuators, and the self-protection manager can
be the kernel mode. If we consider that the kernel is subject to
threats (e.g., kernel level rootkits), then the privilege mode
can be at a lower level such as a hypervisor which isolates
control loop components from the potentially compromised
kernels. In this case, the description of the legal communica-
tions paths should involve kernel communications.

3.3 Positioning the Design

This section characterizes the design of our self-protected
system.

Concerning Forrest et al.’s terminology [7], our design is
distributed because protection rules, which are automati-
cally configured from the System Representation, are enforced
independently by each node of the cluster. Moreover, the
self-protection manager is duplicated on multiple nodes to
avoid a single point of failure. Our system is also

Concerning Kephart’s definition of Autonomic Comput-
ing [13], our design is based on feedback loops (i.e., closed
control The self-protection manager relies on a component-
based System Representation which provides the knowledge
of the system.

Concerning Software engineering, our design can be
related to Model@runtime systems. Model@runtime [2], [4],
[16] leverages model-driven engineering techniques (MDE)
at design time as well as at runtime. Models@runtime
promotes a causally connected representation of the under-
lying system. However, such representation is based on the
artifacts produced from the MDE process and the software
engineering methodologies employed. Our reflective com-
ponent-based approach manipulates lower level abstrac-
tions that are related to the computation models and
represents runtime entities and communication channels.
Moreover Model@runtime has never been experimented
nor evaluated in the context of self-protection. Our solution
adapts automatically the protection rules on each nodes in
the case of the deployment or modification of applications
in the cluster.

4 EXPERIMENTAL VALIDATION

4.1 Experimental Environment

We have chosen JEE clusters to evaluate our self-protection
system. This platform allows the construction of web
application services that are organized in 3 or 4 tiers: a
web server tier, a presentation tier, a business tier
(optional), and a database tier. Each tier can be duplicated
for dependability and availability reasons as depicted Fig. 2.

We used Netfilter1 (a packet filtering framework pro-
vided by the Linux kernel) on each node to enforce
protection rules. Netfilter is used to build actuators for
configuring protection rules and isolating machines (when
intrusions are detected), and to build sensors which detect
illegal JEEs communications (see Annex I, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPDS.2011.161, for
more details).

DE PALMA ET AL.: SELF-PROTECTION IN A CLUSTERED DISTRIBUTED SYSTEM 333

1. www.netfilter.org.

Our evaluation is based on the RUBiS benchmark, which

emulates an online auction application. The infrastructure

corresponds to that of Fig. 2. Load injection in RUBiS is

configured by two transition matrix: a read-only matrix (or

browsing mix) and a read-write matrix (or shopping mix).

These matrix correspond to typical web application work-

loads. Software versions are: Java v1.6, Tomcat 5.5, MySQL

v5.0, and Fedora Core 6 Linux. The physical machines have

the following specifications: Intel Core Duo 1.66 GHz, 2 GB

memory, and Ethernet Gigabit network.

4.2 Level of Protection

Our sensors detect all the communication not explicitly

authorized in the System Representation. Hence, it is possible

to react to all kind of attacks (known and unknown) using

an illegal communication channel. For instance, it is

possible to detect a port scanner and block the attack before

the real intrusion. However, it is impossible, for the

moment, to detect the attacks which follow a legal

communication channels such as SQL injections in the case

of a JEE infrastructure.

4.3 Control Loop Reactivity

This experience evaluates the time between the detection of
an illegal communication and the isolation of compromised
nodes. We measured the delay between the detection of an
illegal communication coming for node 4 and the reconfi-
guration operations on nodes 1, 2, and 9 in order to isolate
node 5. The average time measured (over 1,000 runs) is
2.133 ms with a 0.146 ms standard deviation. Our prototype
is very reactive and can quickly block an intruder.

4.4 Control Loop Intrusivity

This experience evaluates the impact of the protection
control loop on the performance of RUBiS. The load injector
emulates a variable number of clients (from 0 to 3,000 in our
experiments) sending a series of requests. The results of our
experiments are depicted on Figs. 3 and 4. Fig. 3 illustrates
the browse_only_matrix scenario whereas Fig. 4 is about the
default_matrix scenario. In both scenarios, we increment
progressively the number of clients until we reach the
saturation point. We compare the throughput with and
without the self-protection system when ramping up (i.e.,
when the load is increasing progressively between 0 and

334 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 2, FEBRUARY 2012

Fig. 3. Bandwidth for the browse_only_transitions matrix. Fig. 4. Bandwidth for the default_transitions matrix.

Fig. 2. Isolation example.

2,000 clients in parallel) and until saturation (between 2,000
and 3,000 clients in parallel). The results show that for each
matrix, in both regimes (ramp-up and saturation), the
throughput with and without the self-protection system are
very close (between 0 and 4 percent overhead).

However, the filtering rules corresponding to Fig. 2
require a dozen of rules per machine. This number of rules
may impact the system’s performance. To check the
scalability of our system, we have inserted 100 additional
rules in each machines before the 10 real rules which were
generated for our JEE testbed. This amount of rules
represents a medium size cluster composed of approxi-
mately 50 nodes. Results of this latter experiment are given
on Fig. 5. We can see that the overhead induced by the
additional rules is also very low.

Our last experiment measures the response time of the
system to client’s requests. We measure the delay between
the emission of a request by a client and the reception of the
response from the corresponding server. We only evaluate
the delay for read requests (browse_only_matrix) because
they are the fastest kind of request and therefore the most
penalized by the overhead induced by self-protection.
Results represent the average response time with and
without our system for 1,000 runs occurring after the ramp-
up phase (i.e., the server’s caches are full). We notice a
reasonable penalty on response time with a maximal
overhead of 3.5 percent.

5 CONCLUSION

Today, distributed computing environments are increas-
ingly complex and difficult to secure. Following the
autonomic computing vision, a very promising approach
to deal with this issue is to implement a self-protected
system which is able to distinguish legal (self) from illegal
(nonself) operations. The detection of an illegal behavior
triggers a counter-measure to isolate the compromised
resources and prevent further damages. In this vein, we
have designed and implemented a self-protected system
whose main characteristics are: 1) to minimize the
perturbation on the managed system while providing a
high reactivity, 2) to automate the configuration (and
reconfiguration) of security components when the system
evolves, 3) to keep the protection manager (which
implements the protection policy) independent from the
protected legacy system.

We showed how to take advantage of the knowledge of a
component-based application to provide a means of
distinction between legal and illegal operations. We im-
plemented a prototype system for a realistic use case, a
clustered JEE application. When an illegal communication
is detected, the self-protection manager quickly isolates the
compromised nodes. The overhead induced by our ap-
proach is very low and acceptable for high-performance
data servers.

For the moment, the scope of the detected attacks is
limited to illegal communications over TCP/IP. We are thus
unable to spot intruders respecting the expected control
flow and/or targeting different protocols. Our work mostly
targets controlled environments such as data centers (where
most nodes are trusted) and “silent” attacks (aimed at
quietly stealing or destroying data) rather than open grids
and denial-of-service attacks. Our approach is well suited to
the context of multitier applications deployed in a data
center because an attacker knows a priori little about the
structure of the system and will likely have to expose itself
while exploring the network and trying to hijack other
nodes. However, our current proposition may not be very
helpful for peer-to-peer systems, where anyone acts as a
router and can easily determine the architecture of the
application. Currently, the only counter-measure imple-
mented is the isolation of compromised nodes. Our
prototype nonetheless provides an easy way to develop
various counter-measures (e.g., reinstalling compromised
nodes, starting an intrusion backtracking procedure, etc.).

We also intend to investigate new mechanisms to spot
and block attacks targeted at legacy softwares (SQL
injection, etc.) that follow legal communication channels.
Since, in our model, legacy softwares are wrapped by
manageable components, it is possible to encapsulate
information about their normal behaviors. For instance,
one could specify the children processes expectedly created
by a particular application in order to block an illegal fork/
exec. We may also add the definition of well formed
requests to prevent exploits like SQL injections on the
database. We also intend to investigate the support for other
communication protocols.

ACKNOWLEDGMENTS

The work reported in this chapter benefited from the
support of the French National Research Agency through
projects Selfware (ANR-08-SEGI-017).

REFERENCES

[1] Y. Al-Nashif, A.A. Kumar, S. Hariri, Q. Guangzhi, L. Yi, and F.
Szidarovsky, “Multi-Level Intrusion Detection System (ML-IDS),”
Proc. Int’l Conf. Autonomic Computing, pp. 131-140, 2008.

[2] G.S. Blair, N. Bencomo, and R.B. France, “Models@ run.time,”
Computer, vol. 42, no. 10, pp. 22-27, Oct. 2009.

[3] E. Bruneton, T. Coupaye, M. Leclercq, V. Quema, and J.-B. Stefani,
“The Fractal Component Model and Its Support in Java,”
Software—Practice and Experience, vol. 36, nos. 11/12, pp. 1257-
1284, 2006.

[4] B.H.C. Cheng, P. Sawyer, N. Bencomo, and J. Whittle, “A Goal-
Based Modeling Approach to Develop Requirements of an
Adaptive System with Environmental Uncertainty,” Proc. ACM/
IEEE Int’l Conf. Model Driven Eng. Languages and Systems, 2009.

DE PALMA ET AL.: SELF-PROTECTION IN A CLUSTERED DISTRIBUTED SYSTEM 335

Fig. 5. Bandwidth for the browse_only_transitions matrix.

[5] L. Ertoz, E. Eilertson, A. Lazarevic, P. Tan, J. Srivastava, V. Kumar,
and P. Dokas, The MINDS-Minnesota Intrusion Detection System
Next Generation Data Mining. MIT Press, 2004.

[6] S. Forrest, S.A. Hofmeyr, A. Somayaji, and T.A. Longstaff, “A
Sense of Self for Unix Processes,” Proc. IEEE Symp. Research in
Security and Privacy, 1996.

[7] S. Forrest, S.A. Hofmeyr, and A. Somayaji, “Computer Immunol-
ogy,” Comm. the ACM, vol. 40, no. 10, pp. 88-96, 1997.

[8] D. Gao, M.K. Reiter, and D. Song, “Behavioral Distance for
Intrusion Detection,” Proc. Eighth Int’l Symp. Recent Advances in
Intrusion Detection (RAID ’05), Sept. 2006.

[9] J.T. Giffin, D. Dagon, S. Jha, W. Lee, and B.P. Miller, “Environ-
ment-Sensitive Intrusion Detection,” Proc. Int’l Symp. Recent
Advances in Intrusion Detection, Sept. 2005.

[10] A. Goel, K. Po, K. Farhadi, Z. Li, and E. De Lara, “The Taser
Intrusion Recovery System,” Proc. 20th ACM Symp. Operating
Systems Principles, 2005.

[11] Y. Huang and A. Sood, “Self-Cleansing Systems for Intrusion
Containment,” Proc. Workshop Self-Healing, Adaptive and Self-
MANaged Systems, 2002.

[12] Sun Microsystems, Java 2 Platform Enterprise Ed. (J2EE), http://
java.sun.com/j2ee/, 2011.

[13] J. Kephart, An Architectural Blueprint for Autonomic Computing. IBM
White Paper, 2003.

[14] S.T. King and P.M. Chen, “Backtracking Intrusions,” ACM Trans.
Computer Systems, vol. 23, no. 1, pp. 51-76, 2005.

[15] R. Koller, R. Rangaswami, J. Marrero, I. Hernandez, G. Smith, M.
Barsilai, S. Necula, and S. Masoud, “Anatomy of a Real-Time
Intrusion Prevention System,” Proc. Int’l Conf. Autonomic Comput-
ing, pp. 151-160, 2008.

[16] B. Morin, O. Barais, G. Nain, and J.-M. Jezequel, “Taming
Dynamically Adaptive Systems Using Models and Aspects,” Proc.
IEEE Int’l Conf. Software Eng., 2009.

[17] D. Mutz, F. Valeur, C. Kruegel, and G. Vigna, “Anomalous System
Call Detection,” ACM Trans. Information and System Security, vol. 9,
no. 1, pp. 61-93, Feb. 2006.

[18] S. Sicard, F. Boyer, and N. De Palma, “Using Components for
Architecture-Based Management: The Self-Repair Case,” Proc. Int’l
Conf. Software Eng., 2008.

[19] M. Roesch, “Snort—Lightweight Intrusion Detection for Net-
works,” Proc. Large Systems Administration Conf., Nov. 1999.

[20] A. Sundaram, “An Introduction to Intrusion Detection,” ACM
Crossroads Student Magazine, vol. 2, no. 4, pp. 3-7, 1996.

Noel De Palma received the PhD degree in
computer science in 2001. Since 2002 he was
an associate professor in computer science at
the University of Grenoble (ENSIMAG/INP).
Since 2010, he is a professor at Joseph Fourier
University. He is a member of the SARDES
research group at LIG laboratory (UJF/CNRS/
Grenoble INP/INRIA), where he leads re-
searches on Autonomic Computing, Cloud
Computing, and Green Computing.

Daniel Hagimont received the PhD degree from
Polytechnic National Institute of Grenoble,
France in 1993. He is a professor at Polytechnic
National Institute of Toulouse, France and a
member of the IRIT laboratory, where he leads a
group working on operating systems, distributed
systems and middleware. After a postdoctorate
at the University of British Columbia, Vancouver,
Canada in 1994, he joined INRIA Grenoble in
1995. He took his position of the professor in

Toulouse in 2005.

Fabienne Boyer received the PhD degree in
computer science in 1995, while she was a joint
researcher of Bull Laboratories and the IMAG
research Center from the University Joseph
Fourier at Grenoble (France). Since 1995, she
is an associate professor in computer science at
the University Joseph Fourier. She is a member
of the SARDES research group at LIG laboratory
(UJF/CNRS/Grenoble INP/INRIA), where she
works on software reconfigurability with a

special emphasis on reflective models.

Laurent Broto received the PhD degree from
the Toulouse University, France in 2008. He is
an associate professor at Polytechnic National
Institute of Toulouse, France and a member of
the IRIT laboratory, where he is member of a
group working on operating systems, distributed
systems and middleware. After a postdoctorate
at the Oak Ridge National Lab, Oak Ridge TN,
2009, he took his position of an associate
professor at Toulouse in 2009.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

336 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 2, FEBRUARY 2012

